
© 2021 JETIR August 2021, Volume 8, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIREZ06012 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 56

FPGA Based Unicode Data Compression
Using Static Dictionary Technique

Venkata Ratnam Anappindi

Department of ECE

National Institute of Technology

Warangal, India

venkataratnam.anappindi@gmail.com

Abstract— With the increasing demands for large amounts of

data in the digital era for information storage, processing and
transfer, the demand for smaller and faster data storage
memories have also exponentially increased. In order to avoid
the bottleneck between the larger data storages that require
larger bandwidths for data and avoid loss of information we
have to choose correct data compression techniques which
reduces the redundant data storage and in turn reduces the
hardware required for data storage and processing. There are
two different types of data compression techniques/algorithms:
(1) Lossy data compression algorithms (2) Loss less data
compression algorithms. While Lossy compression algorithms
are faster, they involve loss of data/information to certain level
during de-compression or reconstruction. Whereas Lossless
compression algorithm are relatively, they can perfectly
reconstruct the complete information from the compressed data.
We already have several data compression software and tools
like 7-zip, WinZip etc., which compress files, audio, and video at
software level. The aim of this paper is to present a hardware-
based technique to perform Unicode data compression on text
data using static dictionary technique where the input data
stream is scanned, indexed for the positions of characters with a
reference character and replace with certain symbols which are
the ASCII values of the Unicode characters in the text and their
differences from the static dictionary designed based on a hash
table reducing the redundant data and thus reducing the data

size.

Keywords—LZMA, Unicode Encoding, FPGA, Data

Compression

I. INTRODUCTION

 The technique of compressing the data have been for a long time
in software perspective which eases the data storage, data
transmission and processing in many applications and domains
like communication, digital data storage. With the adverse
increase in the digital technologies in the current data driven era,
there is an estimate of nearly 44 zettabytes of data generated in
the world from all sorts of domains by the dawn of 2020 And
this number is expected to reach 175 zettabytes by 2025. All
these data are important for developing IoT based technologies
to Machine Learning algorithms and Artificial Intelligence, from
telemarketing based on content suggestions to generating
cryptocurrency.
With such huge amounts of data being generated we cannot
tolerate to have redundancy in any of such data as with proper
compression algorithms and encoding techniques we can save
millions of dollars spent on handling these data at datacenters
and reduce the traffic over the internet which proportionally
increases the speeds at which perform operations over internet.

Dr.P.Prithvi

Department of ECE

National Institute of Technology

Warangal, India

prithvi@nitw.ac.in

 We say the software-based compression techniques are slower
because the encoding speed of software-based coder is slow
compared to the arrival time of real time data i.e., the software
based encoder are sequential in nature and has to wait for the

arrival of the real time data before processing or encoding any
other data frame. This makes software methods of data
compression quite sloppy compared to the hardware based
solutions and we can achieve high amounts of parallel data
processing and encoding at hardware level [1].

 Also, hardware-based techniques offer high level of security to
the data being encoded and by having dedicated units of
encoders, memory buffer for output data storage and decoders.
 There are two different methods for data compression:
(1)Lossy data compression and

(2)Lossless Data compression.
 We choose to preform lossless data compression-based
technique on FPGA in this paper.

 Lossy data compression algorithms are used where information
loss is tolerable like in case of audio and video data storage and
processing. Whereas for files like spreadsheets, records, word
processing files, we need to use lossless data compression
algorithms to compress the redundant data and reconstruct or
extract exact duplicate of the original data.
 Lossless data compression is generally implemented using one
of two different types namely statistical modeling or dictionary-
based compression.

Statistical Modeling: reads and encodes a single symbol at a
time depending on the probability of character appearance.

Dictionary Based Modelling: This type of modelling uses single
code to replace strings of symbols. Here coding problem is
significantly reduced, leaving the model supremely important.

 There are also other models called adaptive models in which
data need not be scanned before generating any coding to
generate statistics. Instead, the statistics are continually modified
as new characters are read in and coded, but the drawback of
these models is that they are completely unaware of the data. As
the name indicate, these models adapt to the local conditions
quickly to the data stream and begin adjusting the compression
ratios only after a few thousands of bytes. A dictionary-based
compression scheme reads in input data and looks for groups of
symbols that appear in a dictionary. A pointer or index into the
dictionary can be output instead of the code for the symbol if a
string match is

found. The compression ratio depends on the amount of match
occurs. But dictionary-based methods introduce overhead
because the dictionary needs to be transmitted along with the
text.

 There are various high-end data compression algorithms
available from legacy Huffman encoding methods to the latest
Lempel Ziv Marcov chain Algorithm (LZMA). Huffman
coding is quite popular in communications domain which is a
variable to fixed length coding which means variable length
codes are assigned to the input characters based on the
frequency of occurrence. The most frequently occurring data
will be assigned the smallest code whereas the least frequently
occurring data will be assigned the largest code.
 The most popular 7-zip data compression software uses the
LZMA algorithm in which a sliding dictionary is used to scan the
incoming data and update the literals in the dictionary and
replacing the data with the literals in the dictionary on the fly thus
performing the compression[2 - 3].
 Whatever the algorithm may be, we always must deal with the
tradeoff between the compression ratio and the speed of
compression which are inversely proportional to each other. If
we prioritize higher compression ratio where,

Compression ratio = (total number of bits at input) / (total
number of bits at output)

 We must compromise the speed with which the data is
compressed which in turn reduces the performance of the system

http://www.jetir.org/

© 2021 JETIR August 2021, Volume 8, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIREZ06012 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 57

[4 - 5].
In this paper, we present the results of performing data
compression on a text data using static dictionary technique and
a special way of indexing the frequency and position of
characters based on a reference character that is frequently
repeated.

II. LITERATURE SURVEY

A. LZ77

It is commonly referred to as LZ77 and is the first
compression algorithm proposed by Lempel and Ziv. It uses a
dictionary which consists of list of all strings stored into a
window that is captured from the previously read input stream.
When new group of data is read in, the algorithm searches for a
match in previously read data. If matches are found they are
encoded into pointers and sent as output. The drawback if this
algorithm is that it is effective only when the input data is highly
repetitive or redundant.

B. LZMA

 Lempel-Ziv-Markov chain-Algorithm used in 7zip, is a very
popular lossless data compression algorithm which has
overtaken the Huffman coding technique in terms of
compression ratio and speed. This algorithm is efficient with
unknown data stream. In this any sequence of source output is
uniquely parsed into phrases of varying length and these phrases
are encoded using code words of equal length.

C. RUN LENGTH ENCODING

In this the data is stored as a single value and count rather
than the original data. For example, if the input sequence is

44, 44, 44, 44, 45, 45, 27, 27, 26, 26 then the output sequence
will be (44, 4), (45, 2), (27, 2), (26, 2). From the above example,
the compression ratio is better for the longer runs of data [6 -7].

Fig.1 Run Length Encoding Flow chart

 Figure.1 shows the flow chart for how the run length encoding
works. This type of encoding technique is very useful in case of
Bo-medical signal processing like processing, storage, and
transmission if digitized ECG signals.

III. UNICODE DATA COMPRESSION

In the algorithm that we propose for text data compression,
we expect the characters in input data stream to be Unicode
encoded so that they can be replaced with their ASCII values
from the dictionary we create [8 -9] .

 After a single character instance (say for example ‘space’ in

text) is chosen as an index, the output is encoded as below: •

ASCII value of the character.

• Number of repetitions is character in the entire text. • nth

position of the character after kth occurrence of the chosen

index.

Where, n =1,2,3,4,5…….

k= 0,1,2,3,4,5……
This method provides us to send only the ASCII value of the

character, it’s frequency of occurrence and it’s position with
respect to the chosen index, which profoundly reduces the size
of the input data stream.

Fig.2 Steps of encoding the Unicode text data

A. THEORETICAL CALCULATION

 Consider the below example:

“This paper discusses about Unicode data compression”

 Consider a file in which above text is repeated 10 times. In that
text file we have 570 characters each of 8 bit size which sums
upto 4560 bits in total. The entire text consists of only 15
different characters including the “space” character. As per the
algorithm we desire to transmit ASCII code for each character in
8 bit format considering only english alphabets are present,
followed by the frequency of the character occurrence and the
position of the character from the kth space.

For all the 14 characters, not including space as it is chosen
as index, we expect to trasnmit them in below fromat:.

TABLE I. ENCODED SIZE FOR EACH CHARACTER IN TEXT FILE

ASCII
value of

the

character(8

bit)

Frequency
of

character (8
bit)

Position
of

character

(8 bit)

Total 24

bits for

each

character

http://www.jetir.org/

© 2021 JETIR August 2021, Volume 8, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIREZ06012 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 58

We have a total of 14 characters and 15 x 16 = 360 bits. We

transmit the “space” character in the similar fashion except that
it is index itself. This show us that we achieve a compression
ratio of 5.6 which is not very much impressive compared to
today’s high end algorithm but could achieve higher
compression ratio with improvising the techniques used.

B. HARDWARE SETUP

Fig.3 Experimental Hardware setup

The experimental hardware setup is shown in Figure. 3. The
proposed compression algorithm is programmed on Quartus
Prime platform and is tested on Agilex E-tile FPGA USB
programmer. The input data is sent from the Quartus platform to
the FPGA and the compressed data is sent back from FPGA to
the PC.

IV. RESULTS

Our aim is to convert the text in the file into respective ASCII
values and encode those ASCII values as per the proposed
algorithms

Fig:4 Converting characters into ASCII values and reading using

Modelsim

The above figure shows the converted ASCII values of each
character in the text file, loaded into memory buffer and read
using Modelsim console.

Fig 5 Original size of the text file

Above is the original size of the file in windows machine.

Fig. 6 Reading the encoded values using Modelsim

 Figure.6 shows the values being read using Modelsim.
Here in the encoding compresses the data size of original file.

Fig.7 Compressed size of file after encoding

 As per the Figure. 5 and 7 we have compressed the file size from
519 bytes to 156 bytes which is 3 times compression. The ratio
of compression increases exponentially as the size of original
text file increases.

V. CONCLUSION

 The proposed Unicode compression algorithm programmed on
Agilex FPGA can achieve a compression ratio of 1.9 and can
have a better performance than the LZMA algorithm because of
the usage of static dictionary technique. In this paper we have
presented the compression technique with improved speed with
a tradeoff on compression ratio. In future, we expect to improve
the compression ratio of the algorithm up to 4 with the usage of
special encoding techniques.

REFERENCES

[1] David Salomon, Data Compression: The Complete Reference, London
Limited:Springer-Verlag, 2007.

[2] X. Zhao and B. Li, "Implementation of the LZMA compression algorithm
on FPGA," 2017 International Conference on Electron Devices and
Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 2017, pp. 1-2, doi:
10.1109/EDSSC.2017.8126506.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[3] "Hardware Implementation of LZMA Data Compression Algorithm",

International Journal of Applied Information Systems (IJAIS), vol. 5, no. 4,

March 2013, ISSN ISSN: 2249-0868 [4]

http://mattmahoney.net/dc/dce.html#Section_523

[5] http://www.unicode.org/notes/tn31/tn31-2.html#LZ77 [6] A. Avila, R.
Santoyo and S. O. Martinez, "Hardware/software implementation of the
EEG signal compression module for an ambulatory monitoring subsystem,"
2006 International Caribbean Conference on Devices, Circuits and
Systems, Playa del Carmen, Mexico, 2006, pp. 125-129, doi:

http://www.jetir.org/

© 2021 JETIR August 2021, Volume 8, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIREZ06012 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 59

10.1109/ICCDCS.2006.250848. [7] S. Nasehi and H. Pourghassem, "EEG
Signal Compression Based on Adaptive Arithmetic Coding and First-Order
Markov Model for an Ambulatory Monitoring System," 2012 Fourth
International Conference on Computational Intelligence and
Communication Networks, Mathura, India, 2012, pp. 313-316, doi:
10.1109/CICN.2012.103.

[8] M. T. Islam, R. R. Ema, M. R. Islam and T. Islam, "A Lossless Bit
Isolation Algorithm for Data Compression by Using Static Dictionary,"
2019 International Conference on Computer, Communication,
Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi,
Bangladesh, 2019, pp. 1-5, doi:
10.1109/IC4ME247184.2019.9036662.

[9]) M. R. Islam, M. A. Mahmood and M. T. Islam, "A Dynamic 5 Bit Data
Compression Scheme by Using Set Change Table (5BDC)," 2018 4th
International Conference on Electrical Engineering and Information &
Communication Technology (iCEEiCT), Dhaka, Bangladesh, 2018, pp.
221-226, doi: 10.1109/CEEICT.2018.8628160.

http://www.jetir.org/

